Indian Statistical Institute, Bangalore

M. Math.

Second Year, Second Semester Advanced Functional Analysis

Back paper Examination Maximum marks: 100 Date : June 30, 2021 Time: 3 hours Instructor: B V Rajarama Bhat

Notation: In the following \mathcal{H} is a complex separable Hilbert space and $B(\mathcal{H})$ denotes the algebra of all bounded operators on \mathcal{H} .

(1) Fix $n \ge 1$. Let $u_1, u_2, \ldots, u_n, v_1, v_2, \ldots, v_n$ be vectors in \mathcal{H} . Define $\phi : B(\mathcal{H}) \to \mathbb{C}$ by

$$\phi(X) = \sum_{j=1}^{n} \langle u_j, Xv_j \rangle.$$

Prove or disprove the following claims:

- (i) ϕ is continuous in SOT.
- (ii) ϕ is continuous in WOT.

[15]

[15]

- (2) Let $\{e_n : n \in \mathbb{N}\}$ be an orthonormal basis for \mathcal{H} . Let $S : \mathcal{H} \to \mathcal{H}$ be the unilateral shift defined by $Se_n = e_{n+1}, n \in \mathbb{N}$, and extended linearly and continuously. Take $T = 2I S S^*$.
 - (i) Show that T is a positive operator.

(ii) Let E be the spectral measure of T. Compute first three moments of the probability measure E_{e_1,e_1} . [15]

- (3) Obtain polar decomposition of operators S and S^* of Question 2.
- (4) Fix $n \ge 1$. Let \mathcal{U} be the algebra of all $n \times n$ upper-triangular matrices considered as a subalgebra M_n of all $n \times n$ complex matrices. Determine the commutant and the double commutant of \mathcal{U} . [15]
- (5) Let A be a self-adjoint operator on a von Neumann algebra M ⊆ B(H).
 (i) Show that there exist two positive operators A₊, A₋ in M such that A = A₊ A₊ and A₊.A₋ = A₋.A₊ = 0.
 (ii) Show that there exists a projection P in M such that A₊ = AP = PA and
 - $A_{-} = A(I P) = (I P)A.$ [15]
- (6) Let E, F are projections in a von Neumann algebra \mathcal{A} . Show that (i) $(E \vee F F) \sim E E \wedge F$; (ii) $(E E \wedge F^{\perp}) \sim (F E^{\perp} \wedge F)$. [15]
- (7) Let U be the permutation matrix defined by

$$U = \left[\begin{array}{rrr} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{array} \right]$$

Let \mathcal{B} be the unital C^* -algebra generated by U. Determine suitable compact Hausdorff space X such that \mathcal{B} is isomorphic to the space C(X) of continuous functions on X. Determine suitable measure space $(\Omega, \mathcal{F}, \mu)$ such that \mathcal{B} is isomorphic to $L^{\infty}(\Omega, \mathcal{F}, \mu)$. [15]