Indian Statistical Institute, Bangalore

M. Math.

Second Year, Second Semester
Advanced Functional Analysis
Back paper Examination Maximum marks: 100

Date : June 30, 2021
Time: 3 hours
Instructor: B V Rajarama Bhat

Notation: In the following \mathcal{H} is a complex separable Hilbert space and $B(\mathcal{H})$ denotes the algebra of all bounded operators on \mathcal{H}.
(1) Fix $n \geq 1$. Let $u_{1}, u_{2}, \ldots, u_{n}, v_{1}, v_{2}, \ldots, v_{n}$ be vectors in \mathcal{H}. Define $\phi: B(\mathcal{H}) \rightarrow \mathbb{C}$ by

$$
\phi(X)=\sum_{j=1}^{n}\left\langle u_{j}, X v_{j}\right\rangle
$$

Prove or disprove the following claims:
(i) ϕ is continuous in SOT.
(ii) ϕ is continuous in WOT.
(2) Let $\left\{e_{n}: n \in \mathbb{N}\right\}$ be an orthonormal basis for \mathcal{H}. Let $S: \mathcal{H} \rightarrow \mathcal{H}$ be the unilateral shift defined by $S e_{n}=e_{n+1}, n \in \mathbb{N}$, and extended linearly and continuously. Take $T=2 I-S-S^{*}$.
(i) Show that T is a positive operator.
(ii) Let E be the spectral measure of T. Compute first three moments of the probability measure $E_{e_{1}, e_{1}}$.
(3) Obtain polar decomposition of operators S and S^{*} of Question 2.
(4) Fix $n \geq 1$. Let \mathcal{U} be the algebra of all $n \times n$ upper-triangular matrices considered as a subalgebra M_{n} of all $n \times n$ complex matrices. Determine the commutant and the double commutant of \mathcal{U}.
(5) Let A be a self-adjoint operator on a von Neumann algebra $\mathcal{M} \subseteq B(\mathcal{H})$.
(i) Show that there exist two positive operators A_{+}, A_{-}in \mathcal{M} such that $A=$ $A_{+}-A_{+}$and $A_{+} \cdot A_{-}=A_{-} . A_{+}=0$.
(ii) Show that there exists a projection P in \mathcal{M} such that $A_{+}=A P=P A$ and $A_{-}=A(I-P)=(I-P) A$.
[15]
(6) Let E, F are projections in a von Neumann algebra \mathcal{A}. Show that (i) $(E \vee F-F) \sim$ $E-E \wedge F ;($ ii $)\left(E-E \wedge F^{\perp}\right) \sim\left(F-E^{\perp} \wedge F\right)$.
(7) Let U be the permutation matrix defined by

$$
U=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right]
$$

Let \mathcal{B} be the unital C^{*}-algebra generated by U. Determine suitable compact Hausdorff space X such that \mathcal{B} is isomorphic to the space $C(X)$ of continuous functions on X. Determine suitable measure space $(\Omega, \mathcal{F}, \mu)$ such that \mathcal{B} is isomorphic to $L^{\infty}(\Omega, \mathcal{F}, \mu)$.

